Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Brain Res ; 1835: 148919, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38588846

BACKGROUND: As a key substance for intercellular communication, exosomes could be a potential strategy for stroke treatment. Activated microglia disrupt the integrity of blood-brain barrier (BBB) to facilitate the stroke process. Hence, this study was designed to investigate the effect of microglia-derived exosomes on BBB cell model injury and to explore the underlying molecular mechanisms. METHODS: M1 polarization of BV2 cells was induced with LPS and their derived exosomes were isolated. Astrocytes were cultured in primary culture and constructed with End3 cells as a BBB cell model. After co-culture with exosomes, the BBB cell model was examined for changes in TEER, permeability, and expression of BBB-related proteins (Claudin-1, Occludin, ZO-1 and JAM). Resting and M1-type BV2 cell-derived exosomes perform small RNA sequences and differentially expressed miRNAs (DE-miRNAs) are identified by bioinformatics. RESULTS: M1-type BV2 cell-derived exosomes decreased End3 cell viability, and increased their apoptotic ratio. Moreover, M1 type BV2 cell-derived exosomes dramatically enhanced the permeability of BBB cell model, and diminished the TEER and BBB-related protein (Claudin-1, Occludin, ZO-1) expression. Notably, resting BV2 cell-derived exosomes had no effect on the integrity of BBB cell model. Sequencing results indicated that 71 DE-miRNAs were present in M1 BV2 cell-derived exosomes, and their targets mediated neurological development and signaling pathways such as MAPK and cAMP. RT-qPCR confirmed the differential expression of mmu-miR-125a-5p, mmu-miR-122b-3p, mmu-miR-139-3p, mmu-miR-330-3p, mmu-miR-3057-5p and mmu-miR-342-3p consistent with the small RNA sequence. Furthermore, Creb1, Jun, Mtor, Frk, Pabpc1 and Sdc1 are the most well-connected proteins in the PPI network. CONCLUSION: M1-type microglia-derived exosomes contribute to the injury of BBB cell model, which has the involvement of miRNAs. Our findings provide new perspectives and potential mechanisms for future M1 microglia-derived exosomes as therapeutic targets in stroke.

2.
J Mol Neurosci ; 74(1): 5, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38189854

Parkinson's disease (PD) is a neurodegenerative disease that mainly manifests as cognitive decline and motor dysfunction, the treatment of which is still a major challenge in the clinical field. Acupuncture therapy has been shown in many studies to enhance the body's own immunity and disease resistance. This study mainly discusses the specific mechanism underlying electroacupuncture intervention in improving PD. Male C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a mouse PD model, and the chorea trembling control area of the head of PD mice was treated by electroacupuncture. Western blotting was used to detect the expression of related proteins in mouse pathological samples; TUNEL measured neuronal apoptosis levels; Nissl staining observed neuronal damage; immunofluorescence and immunohistochemistry were used to detect the expression of Iba-1, TH, and α-syn in substantia nigra denser (SN). The expression levels of oxidative stress factors and inflammatory factors were measured by kits. Flow cytometry measured mitochondrial membrane potential and Ca2+ levels. MPTP intraperitoneal injection induced an increase in inflammatory factors in PD mice and promoted the oxidative stress response, and the inflammatory response was alleviated after electroacupuncture treatment. Electroacupuncture intervention effectively alters the decrease in oxidative stress levels and alleviates neuronal damage in PD mice. Electroacupuncture improves mitochondrial dysfunction induced by MPTP in PD mice by activating the SIRT1/AMPK signaling pathway. We also confirmed that knocking down TRPC1 can inhibit the SIRT1/AMPK signaling pathway, weaken the Ca2+ content in mouse neuronal tissue, and promote cell apoptosis. Electroacupuncture improves neuronal damage and alleviates PD in mice through the TRPC1 and SIRT1/AMPK signaling pathways. In addition, electroacupuncture therapy can improve MPTP-induced mitochondrial dysfunction in PD mice and alleviate the PD process.


Electroacupuncture , Mitochondrial Diseases , Neurodegenerative Diseases , Parkinson Disease , Male , Animals , Mice , Mice, Inbred C57BL , Parkinson Disease/therapy , Sirtuin 1/genetics , AMP-Activated Protein Kinases , Disease Models, Animal
3.
Neurologist ; 29(1): 17-21, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37639572

INTRODUCTION: Systemic lupus erythematosus (SLE) is a heterogenous, devastating autoimmune inflammatory disease with multiorgan involvement. A variety of neurological and psychiatric symptoms may be caused by nervous system involvement, termed neuropsychiatric systemic lupus erythematosus. CASE REPORT: We describe a young man newly diagnosed with SLE who had a stroke as an initial symptom and was found to have cerebral large-vessel vasculitis and Fahr syndrome. CONCLUSIONS: The novelties of this report are the extensive cerebral calcification demonstrated on head computerized tomography in a patient with SLE, and the depiction of an underlying vasculitis on high-resolution magnetic resonance vessel wall imaging. It is our aim to describe this atypical form of neuropsychiatric systemic lupus erythematosus onset and to make known the usefulness of the new magnetic resonance imaging techniques for the diagnosis of cerebral large-vessel vasculitis.


Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Vasculitis, Central Nervous System , Male , Humans , Lupus Vasculitis, Central Nervous System/complications , Lupus Vasculitis, Central Nervous System/diagnostic imaging , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnostic imaging , Vasculitis, Central Nervous System/complications , Vasculitis, Central Nervous System/diagnostic imaging , Magnetic Resonance Imaging
4.
J Neuroinflammation ; 20(1): 53, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36855153

BACKGROUND: Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS: A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS: A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase ß (IKKß). IKKß reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS: The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKß/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.


MicroRNAs , Neuroprotective Agents , Reperfusion Injury , Animals , Rats , NF-kappa B , I-kappa B Kinase , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Protein Serine-Threonine Kinases , Peptides/pharmacology , Peptides/therapeutic use , Reperfusion Injury/drug therapy
5.
J Neuroinflammation ; 19(1): 284, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36457055

BACKGROUND: Due to the complexity of the mechanisms involved in epileptogenesis, the available antiseizure drugs (ASDs) do not meet clinical needs; hence, both the discovery of new ASDs and the elucidation of novel molecular mechanisms are very important. METHODS: BALB/c mice were utilized to establish an epilepsy model induced by pentylenetetrazol (PTZ) administration. The peptide HsTx2 was administered for treatment. Primary astrocyte culture, immunofluorescence staining, RNA sequencing, identification and quantification of mouse circRNAs, cell transfection, bioinformatics and luciferase reporter analyses, enzyme-linked immunosorbent assay, RNA extraction and reverse transcription-quantitative PCR, Western blot and cell viability assays were used to explore the potential mechanism of HsTx2 via the circ_0001293/miR-8114/TGF-ß2 axis. RESULTS: The scorpion venom peptide HsTx2 showed an anti-epilepsy effect, reduced the inflammatory response, and improved the circular RNA circ_0001293 expression decrease caused by PTZ in the mouse brain. Mechanistically, in astrocytes, circ_0001293 acted as a sponge of endogenous microRNA-8114 (miR-8114), which targets transforming growth factor-beta 2 (TGF-ß2). The knockdown of circ_0001293, overexpression of miR-8114, and downregulation of TGF-ß2 all reversed the anti-inflammatory effects and the influence of HsTx2 on the MAPK and NF-κB signaling pathways in astrocytes. Moreover, both circ_0001293 knockdown and miR-8114 overexpression reversed the beneficial effects of HsTx2 on inflammation, epilepsy progression, and the MAPK and NF-κB signaling pathways in vivo. CONCLUSIONS: HsTx2 suppressed PTZ-induced epilepsy by ameliorating inflammation in astrocytes via the circ_0001293/miR-8114/TGF-ß2 axis. Our results emphasized that the use of exogenous peptide molecular probes as a novel type of ASD, as well as to explore the novel endogenous noncoding RNA-mediated mechanisms of epilepsy, might be a promising research area.


MicroRNAs , RNA, Circular , Scorpion Venoms , Transforming Growth Factor beta2 , Animals , Mice , Inflammation , Mice, Inbred BALB C , MicroRNAs/genetics , NF-kappa B , Pentylenetetrazole/toxicity , Seizures/chemically induced , Transforming Growth Factor beta2/genetics , RNA, Circular/genetics
6.
Brain Imaging Behav ; 16(6): 2586-2600, 2022 Dec.
Article En | MEDLINE | ID: mdl-36044168

We aimed to perform a combined analysis of cortical thickness and functional connectivity to explore their association with cognitive impairment in Parkinson's disease (PD). A total of 53 PD and 15 healthy control subjects were enrolled. PD patients were divided into PD with normal cognition (PD-NC, n = 25), PD with mild cognitive impairment (PD-MCI, n = 11), and PD with dementia (PDD, n = 17). In some analyses, the PD-MCI and PDD groups were aggregated to represent "PD patients with cognitive impairment". Cognitive status was assessed with the Mini-Mental State Examination (MMSE). Anatomical magnetic resonance imaging and resting-state functional connectivity analysis were performed in all subjects. First, surface-based morphometry measurements of cortical thickness and voxels with cortical thickness reduction were detected. Then, regions showing reduced thickness were analyzed for changes in resting-state functional connectivity in PD involving cognitive impairment. Our results showed that, compared with PD-NC, patients with cognitive impairment showed decreased cortical thickness in the left superior temporal, left lingual, right insula, and right fusiform regions. PD-MCI patients showed these alterations in the right lingual region. Widespread cortical thinning was detected in PDD subjects, including the left superior temporal, left fusiform, right insula, and right fusiform areas. We found that cortical thinning in the left superior temporal, left fusiform, and right temporal pole regions positively correlated with MMSE score. In the resting-state functional connectivity analysis, we found a decrease in functional connectivity between the cortical atrophic brain areas mentioned above and cognition-related brain networks, as well as an increase in functional connectivity between those region and the cerebellum. Alterations in cortical thickness may result in a dysfunction of resting-state functional connectivity, contributing to cognitive decline in patients with PD. However, it is more probable that the relation between structure and FC would be bidirectional,and needs more research to explore in PD cognitve decline.


Cognitive Dysfunction , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Magnetic Resonance Imaging/methods , Cerebral Cortical Thinning , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Atrophy
7.
J Biol Chem ; 298(10): 102429, 2022 10.
Article En | MEDLINE | ID: mdl-36037970

Stroke can lead to severe nerve injury and debilitation, resulting in considerable social and economic burdens. Due to the high complexity of post-injury repair mechanisms, drugs approved for use in stroke are extremely scarce, and thus, the discovery of new antistroke drugs and targets is critical. Tryptophan hydroxylase 1 (TPH1) is involved in a variety of mental and neurobehavioral processes, but its effects on stroke have not yet been reported. Here, we used primary astrocyte culture, quantitative real-time PCR, double immunofluorescence assay, lentiviral infection, cell viability analysis, Western blotting, and other biochemical experiments to explore the protective mechanism of peptide OM-LV20, which previously exhibited neuroprotective effects in rats after ischemic stroke via a mechanism that may involve TPH1. First, we showed that TPH1 was expressed in rat astrocytes. Next, we determined that OM-LV20 impacted expression changes of TPH1 in CTX-TNA2 cells and exhibited a protective effect on the decrease in cell viability and catalase (CAT) levels induced by hydrogen peroxide. Importantly, we also found that TPH1 expression induced by OM-LV20 may be related to the level of change in the pituitary adenylate cyclase-activating peptide type 1 receptor (PAC1R) and to the JNK signaling pathways, thereby exerting a protective effect on astrocytes against oxidative stress. The protective effects of OM-LV20 likely occur via the 'PAC1R/JNK/TPH1' axis, thus highlighting TPH1 as a novel antistroke drug target.


Astrocytes , MAP Kinase Kinase 4 , Oxidative Stress , Peptides , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Stroke , Tryptophan Hydroxylase , Animals , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Oxidative Stress/drug effects , Peptides/pharmacology , Stroke/prevention & control , Tryptophan Hydroxylase/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , MAP Kinase Kinase 4/metabolism
8.
J Neuroimmunol ; 358: 577662, 2021 09 15.
Article En | MEDLINE | ID: mdl-34311152

This study investigated the potential association between levels of plasma neurofilament light chain (NfL) and cognitive function in patients suffering from Parkinson's disease (PD) in P.R. China.We collected a total of 168 participants (130 PD patients and 38 healthy controls),and evaluated the relationship of plasma NfL levels with cognitive dysfunction in PD patients. Our results shown that plasma NfL levels increased with an increase in cognitive impairment across the three groups of PD patients: PD with normal cognition (PD-NC), 17.9 ± 8.9 pg/ml; PD with mild cognitive impairment (PD-MCI),21.9 ± 10.3 pg/ml; and PD dementia (PDD), 35.7 ± 21.7 pg/ml. Higher MMSE scores were associated with lower plasma NfL levels (r = -0.49, 95% CI -0.61 to -0.34, p < 0.0001). Our results associating plasma NfL levels with cognitive dysfunction in PD are consistent with previous studies carried out in several countries/district, based on our meta-analysis.


Cognitive Dysfunction/blood , Cognitive Dysfunction/psychology , Neurofilament Proteins/blood , Parkinson Disease/blood , Parkinson Disease/psychology , Aged , Biomarkers/blood , Cognition/physiology , Cognitive Dysfunction/diagnosis , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/diagnosis
9.
Neuromolecular Med ; 23(2): 242-246, 2021 06.
Article En | MEDLINE | ID: mdl-33387304

The aim of this study is to explore whether the single nucleotide polymorphism rs2275294 in the ZNF512B gene is related to the length of survival of patients with amyotrophic lateral sclerosis (ALS). This prospective study examined 212 patients with ALS, who were genotyped at the rs2275294 locus in ZNF512B using the ligase method. Genotype was compared with clinical data and survival. Kaplan-Meier survival analysis and Cox hazard regression were used to identify risk factors of shorter survival. Our results were meta-analyzed together with previous work in order to examine the potential association between the rs2275294-C allele and survival. Of the 212 patients, 166 carried the CC + CT genotype at the rs2275294 locus, while 46 carried the TT genotype. Patients with the C allele showed significantly shorter survival than those without it (34.13 ± 1.9 vs. 45.32 ± 5.7 months, p = 0.036). Cox analysis identified the C allele and time from symptom onset to diagnosis as risk factors for shorter survival. Meta-analysis of 447 patients in China and Japan confirmed the rs2275294-C allele to be an independent risk factor of shorter survival in ALS patients. The C allele at the rs2275294 locus in ZNF512B is a risk factor for shorter survival in patients with ALS.


Amyotrophic Lateral Sclerosis/genetics , Carrier Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Alleles , Amyotrophic Lateral Sclerosis/mortality , China/epidemiology , Delayed Diagnosis , Female , Genetic Predisposition to Disease , Genotype , Humans , Japan/epidemiology , Kaplan-Meier Estimate , Life Expectancy , Male , Middle Aged , Prognosis , Proportional Hazards Models , Risk Factors
10.
Biochem Biophys Res Commun ; 537: 36-42, 2021 01 22.
Article En | MEDLINE | ID: mdl-33383562

Ischemia/reperfusion (I/R) is a common injury leading to ischemic stroke. At present, I/R treatment remains limited, highlighting the urgent need for the discovery and development of new protective drugs for brain injury. Here, we investigated the neuroprotective effects of short peptide OM-LV20 previously identified from amphibian against I/R rats. Results showed that intraperitoneal administration of OM-LV20 (20 ng/kg) significantly reduced infarct area formation, improved behavioral abnormalities, and protected cortical and hippocampal neurons against death caused by I/R. Moreover, the underlying molecular mechanism was involved with the regulation of the MAPK and BDNF/AKT signaling pathways, as well as the levels of cyclic adenosine monophosphate, pituitary adenylate cyclase-activating polypeptide receptor, and tryptophan hydroxylase 1. To the best of our knowledge, this research was the first report to describe the neuroprotective effects of an amphibian skin secretion-derived peptide in I/R rats and highlighted OM-LV20 as a promising drug candidate for the development of novel anti-stroke therapies.


Neuroprotective Agents/therapeutic use , Peptides/therapeutic use , Reperfusion Injury/drug therapy , Amino Acid Sequence , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Protein Stability/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Reperfusion Injury/pathology , Signal Transduction/drug effects , Tryptophan Hydroxylase/metabolism
11.
Cell Transplant ; 26(7): 1262-1275, 2017 07.
Article En | MEDLINE | ID: mdl-28933221

Traumatic brain injury (TBI) is a common disease that usually causes severe neurological damage, and current treatment is far from satisfactory. The neuroprotective effects of neural stem cell (NSC) transplantation in the injured nervous system have largely been known, but the underlying mechanisms remain unclear, and their limited sources impede their clinical application. Here, we established a rat model of TBI by dropping a weight onto the cortical motor area of the brain and explored the effect of engrafted NSCs (passage 3, derived from the hippocampus of embryonic 12- to 14-d green fluorescent protein transgenic mice) on TBI rats. Moreover, RT-PCR and Western blotting were employed to investigate the possible mechanism associated with NSC grafts. We found rats with TBI exhibited a severe motor and equilibrium dysfunction, while NSC transplantation could partly improve the motor function and significantly reduce cell apoptosis and increase B-cell lymphoma-extra large (Bcl-xL) expression at 7 d postoperation. However, other genes including Bax, B-cell lymphoma 2, Fas ligand, and caspase3 did not exhibit significant differences in expression. Moreover, to test whether Bcl-xL could be used as a therapeutic target, herpes simplex virus (HSV) 1 carrying Bcl-xL recombinant was constructed and injected into the pericontusional cortices. Bcl-xL overexpression not only resulted in a significant improvement in neurological function but also inhibits cell apoptosis, as compared with the TBI rats, and exhibits the same effects as the administration of NSC. The present study therefore indicated that NSC transplantation could promote the recovery of TBI rats in a manner similar to that of Bcl-xL overexpression. Therefore, Bcl-xL overexpression, to some extent, could be considered as a useful strategy to replace NSC grafting in the treatment of TBI in future clinical practices.


Apoptosis , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/therapy , Neural Stem Cells/transplantation , Recovery of Function , Stem Cell Transplantation , Up-Regulation , Animals , Apoptosis/genetics , Brain Injuries, Traumatic/pathology , Cell Differentiation , Cell Shape , Cell Survival , Cerebral Cortex/pathology , Mice , Models, Neurological , Neural Stem Cells/cytology , Open Reading Frames/genetics , Rats, Sprague-Dawley , bcl-X Protein/metabolism
12.
Neural Regen Res ; 8(9): 853-6, 2013 Mar 25.
Article En | MEDLINE | ID: mdl-25206733

The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.

...